59 research outputs found

    Interactive access and management for four-dimensional environmental data sets using McIDAS

    Get PDF
    Significant accomplishments in the past year are presented and include the following: (1) enhancements to VIS-5D; (2) Implementation of the VIS AD System; and (3) numerical modeling applications. Focus of current research and plans for next year in the following areas are briefly discussed: (1) continued development and application of the VIS-AD system; (2) further enhancements to VIS-5D; and (3) plans for modeling applications

    Management and display of four-dimensional environmental data sets using McIDAS

    Get PDF
    Over the past four years, great strides have been made in the areas of data management and display of 4-D meteorological data sets. A survey was conducted of available and planned 4-D meteorological data sources. The data types were evaluated for their impact on the data management and display system. The requirements were analyzed for data base management generated by the 4-D data display system. The suitability of the existing data base management procedures and file structure were evaluated in light of the new requirements. Where needed, new data base management tools and file procedures were designed and implemented. The quality of the basic 4-D data sets was assured. The interpolation and extrapolation techniques of the 4-D data were investigated. The 4-D data from various sources were combined to make a uniform and consistent data set for display purposes. Data display software was designed to create abstract line graphic 3-D displays. Realistic shaded 3-D displays were created. Animation routines for these displays were developed in order to produce a dynamic 4-D presentation. A prototype dynamic color stereo workstation was implemented. A computer functional design specification was produced based on interactive studies and user feedback

    The VIS-AD data model: Integrating metadata and polymorphic display with a scientific programming language

    Get PDF
    The VIS-AD data model integrates metadata about the precision of values, including missing data indicators and the way that arrays sample continuous functions, with the data objects of a scientific programming language. The data objects of this data model form a lattice, ordered by the precision with which they approximate mathematical objects. We define a similar lattice of displays and study visualization processes as functions from data lattices to display lattices. Such functions can be applied to visualize data objects of all data types and are thus polymorphic

    IXPE Mission System Concept and Development Status

    Get PDF
    The Goal of the Imaging X-Ray Polarimetry Explorer (IXPE) Mi SMEX), is to expand understanding of high-energy astrophysical processes and sources, in support of NASAs first science objective in Astrophysics: Discover how the universe works. IXPE, an international collaboration, will conduct X-ray imaging polarimetry for multiple categories of cosmic X-ray sources such as neutron stars, stellar-mass black holes, supernova remnants and active galactic nuclei. The Observatory uses a single science operational mode capturing the X-ray data from the targets. The IXPE Observatory consists of spacecraft and payload modules built up in parallel to form the Observatory during system integration and test. The payload includes three X-ray telescopes each consisting of a polarization-sensitive, gas pixel X-ray detector, paired with its corresponding grazing incidence mirror module assembly (MMA). A deployable boom provides the correct separation (focal length) between the detector units (DU) and MMAs. These payload elements are supported by the IXPE spacecraft which is derived from the BCP-small spacecraft architecture. This paper summarizes the IXPE mission science objectives, updates the Observatory implementation concept including the payload and spacecraft ts and summarizes the mission status since last years conference

    Climate Science Special Report: Fourth National Climate Assessment (NCA4), Volume I

    Get PDF
    New observations and new research have increased our understanding of past, current, and future climate change since the Third U.S. National Climate Assessment (NCA3) was published in May 2014. This Climate Science Special Report (CSSR) is designed to capture that new information and build on the existing body of science in order to summarize the current state of knowledge and provide the scientific foundation for the Fourth National Climate Assessment (NCA4)

    Single cell cortical bone transcriptomics define novel osteolineage gene sets altered in chronic kidney disease

    Get PDF
    IntroductionDue to a lack of spatial-temporal resolution at the single cell level, the etiologies of the bone dysfunction caused by diseases such as normal aging, osteoporosis, and the metabolic bone disease associated with chronic kidney disease (CKD) remain largely unknown.MethodsTo this end, flow cytometry and scRNAseq were performed on long bone cells from Sost-cre/Ai9+ mice, and pure osteolineage transcriptomes were identified, including novel osteocyte-specific gene sets.ResultsClustering analysis isolated osteoblast precursors that expressed Tnc, Mmp13, and Spp1, and a mature osteoblast population defined by Smpd3, Col1a1, and Col11a1. Osteocytes were demarcated by Cd109, Ptprz1, Ramp1, Bambi, Adamts14, Spns2, Bmp2, WasI, and Phex. We validated our in vivo scRNAseq using integrative in vitro promoter occupancy via ATACseq coupled with transcriptomic analyses of a conditional, temporally differentiated MSC cell line. Further, trajectory analyses predicted osteoblast-to-osteocyte transitions via defined pathways associated with a distinct metabolic shift as determined by single-cell flux estimation analysis (scFEA). Using the adenine mouse model of CKD, at a time point prior to major skeletal alterations, we found that gene expression within all stages of the osteolineage was disturbed.ConclusionIn sum, distinct populations of osteoblasts/osteocytes were defined at the single cell level. Using this roadmap of gene assembly, we demonstrated unrealized molecular defects across multiple bone cell populations in a mouse model of CKD, and our collective results suggest a potentially earlier and more broad bone pathology in this disease than previously recognized

    Visualizing Scientific Computations: A System Based on Lattice-Structured Data and Display Models

    No full text
    In this thesis we develop a system that makes scientific computations visible and enables physical scientists to perform visual experiments with their computations. Our approach is unique in the way it integrates visualization with a scientific programming language. Data objects of any user-defined data type can be displayed, and can be displayed in any way that satisfies broad analytic conditions, without requiring graphics expertise from the user. Furthermore, the system is highly interactive. In order to achieve generality in our architecture, we first analyze the nature of scientific data and displays, and the visualization mappings between them. Scientific data and displays are usually approximations to mathematical objects (i.e., variables, vectors and functions) and this provides a natural way to define a mathematical lattice structure on data models and display models. Lattice-structured models provide a basis for integrating certain forms of scientific metadata into the computational and display semantics of data, and also provide a rigorous interpretation of certain expressiveness conditions on the visualization mapping from data to displays. Visualization mappings satisfying these expressiveness conditions are lattice isomorphisms. Applied to the data types of a scientific programming language, this implies that visualization mappings from data aggregates to display aggregates can always be decomposed into mappings of data primitives to display primitives. These results provide very flexible data and display models, and provide the basis for flexible and easy-to-use visualization of data objects occurring in scientific computations

    Automated Display of Geometric Data Types

    No full text

    Interactive access and management for four-dimensional environmental data sets using McIDAS

    Get PDF
    This grant has fundamentally changed the way that meteorologists look at the output of their atmospheric models, through the development and wide distribution of the Vis5D system. The Vis5D system is also gaining acceptance among oceanographers and atmospheric chemists. Vis5D gives these scientists an interactive three-dimensional movie of their very large data sets that they can use to understand physical mechanisms and to trace problems to their sources. This grant has also helped to define the future direction of scientific visualization through the development of the VisAD system and its lattice data model. The VisAD system can be used to interactively steer and visualize scientific computations. A key element of this capability is the flexibility of the system's data model to adapt to a wide variety of scientific data, including the integration of several forms of scientific metadata
    • …
    corecore